Expanding the Applicability of Four Iterative Methods for Solving Least Squares Problems
نویسندگان
چکیده
منابع مشابه
Preconditioned Iterative Methods for Solving Linear Least Squares Problems
New preconditioning strategies for solving m × n overdetermined large and sparse linear least squares problems using the CGLS method are described. First, direct preconditioning of the normal equations by the Balanced Incomplete Factorization (BIF) for symmetric and positive definite matrices is studied and a new breakdown-free strategy is proposed. Preconditioning based on the incomplete LU fa...
متن کاملPreconditioned Iterative Methods for Weighted Toeplitz Least Squares Problems
We consider the iterative solution of weighted Toeplitz least squares problems. Our approach is based on an augmented system formulation. We focus our attention on two types of preconditioners: a variant of constraint preconditioning, and the Hermitian/skew-Hermitian splitting (HSS) preconditioner. Bounds on the eigenvalues of the preconditioned matrices are given in terms of problem and algori...
متن کاملGauss-Seidel Iterative Methods for Rank Deficient Least Squares Problems
We study the semiconvergence of Gauss-Seidel iterative methods for the least squares solution of minimal norm of rank deficient linear systems of equations. Necessary and sufficient conditions for the semiconvergence of the Gauss-Seidel iterative method are given. We also show that if the linear system of equations is consistent, then the proposed methods with a zero vector as an initial guess ...
متن کاملFast Iterative Methods for Solving Toeplitz-plus-hankel Least Squares Problems∗
In this paper, we consider the impulse responses of the linear-phase filter whose characteristics are determined on the basis of an observed time series, not on a prior specification. The impulse responses can be found by solving a least squares problem min ‖d − (X1 + X2)w‖2 by the fast Fourier transform (FFT) based preconditioned conjugate gradient method, for (M +2n−1)by-n real Toeplitz-plus-...
متن کاملGMRES Methods for Least Squares Problems
The standard iterative method for solving large sparse least squares problems min ∈Rn ‖ −A ‖2, A ∈ Rm×n is the CGLS method, or its stabilized version LSQR, which applies the (preconditioned) conjugate gradient method to the normal equation ATA = AT . In this paper, we will consider alternative methods using a matrix B ∈ Rn×m and applying the Generalized Minimal Residual (GMRES) method to min ∈R...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of West University of Timisoara - Mathematics and Computer Science
سال: 2017
ISSN: 1841-3307
DOI: 10.1515/awutm-2017-0013